杨山故意抬头,看台下人反应,“哦,我知道有人会有疑问,是么?这位同学你请说。”
“杨先生,如果这样的话,那每个接收用户听到的声音不就成了断断续续的吗?”
“你说的有道理,确实是这样的。”杨山笑着解释道,“不过,你看过电影吗?电影的画面其实也是断断续续的,它是由静态的照片组成的,每秒变换24张照片,因为变换的足够快,所以让人认为电影中的画面是连续动态的。声音也同样可以如此操作。”
看到还是有人不太理解,杨山继续解释,“比如说,我把一秒内的电信号平均切成一万份,同时把要传输的声音信号也切成一万份片段,平均抽出其中的100份放入到那一万份的电信号载波的对应位置中,这样的话这条电信号就可以同时搭载100个声音信号共一万份片段。
而通过解调之后分发到各个话筒中的声音信号确实是断断续续的,但是因为声音片段间隔时间太短了,1秒之内就有100个声音片段传入人耳,就会让人认为声音是连续的。
而且因为人声的音调音强变化远小于传入的片段频率,所以对人来说,实际上接听到的声音和发送方传出声音对人耳没什么区别。”
“大家理解了么?”
“理解了,就是把卡车换成了火车,每一节车厢搭载不同来源的声音。到目的地后分发。”台下有人回应道。
“非常棒!”杨山松口气,看来自己的表达能力还可以,“还有疑问吗?”
看到下边的人都没有面露疑色,杨山继续,“频分技术和时分技术就是目前常用的两种多路复用的技术。下面请各位发挥一下想象力,还能在这两种的基础上想出什么更好的办法吗?”
“频分技术和时分技术同时使用。”有一个鸡贼的学生立刻举手回答。
这个答案没有多少难度,不过为了调动学生的积极性,杨山还是鼓励了一番,手里掂着粉笔,继续问道,“我把刚才这位同学说的方法称为频时技术,还有吗?大家再想想!”
这时候张杰阳举手,有些胆怯的说,“杨先生,你刚才提到频分技术的时候,电信号的频率上限只到了10万赫兹,那能不能继续向上呢,这样可利用的带宽就更多了,那同时可传输的信号就更多了。”
杨山刚想回答,看到另一个同学举手,于是就让他发言。
“杨先生,如果频率再高的话,电信号在有线传输中衰减很快,所以我觉得不适合。”
哇,今天没白讲,真有厉害的学生。
“你叫什么名字?”
“赵怡宗,经济专业大三学生。”
杨山让两人坐下,“10万赫兹以上的频段也可以用,但是越向上遇到的困难就越多,比如赵同学所说的信号衰减问题。解决衰减快最直接的方法是使用中继或者信号放大器。而且在高频电信号传输中,使用的线材也不是咱们通常看到的普通双交电话线,而是特制的线缆。
比如现在咱们拨打跨洋电话使用的线材就是同轴电缆。不过因为线材十分昂贵,所以这种技术的使用场景十分有限。
越高频率的电信号在传输过程中遇到的问题越多......”
杨山又详细解释了一番高频电信号在传输过程中遇到的问题,比如电磁效应、波导效应、趋肤效应等,以及同轴电缆是如何克服这些困难实现信号的远距离传送的。
这部分内容十分的专业,但是杨山说的兴起,已经顾不上台下人的感受,各种专业性的术语脱口而出。台下的人已经完全懵逼了,包括物理专业的学生也有些跟不上。
巴拉巴拉了十多分钟,杨山心里终于痛快了,他已经憋屈好久了。
不过看到台下似乎没人响应,杨山眨眨眼睛,回到原来的节奏。
“咱们接着往下推导,张同学的想法就是充分利用可利用的带宽。
刚才我已经说过了,人声主要频段集中在300-3400赫兹,就是说一个声音信号就要占用3000赫兹的频段,为了避免相邻信号的干扰,我们通常是给一个信道分配4000赫兹频段,就像刚才的那样分层级。
如果我们的调制技术更高明,那各个信号之间的安全距离就可以缩小一下,比如给一个信道分配3200赫兹的频段。这样就能在可利用的频段带宽中把信道数量提高2成。”
“此外,”杨山故意顿了顿,开始敲黑板,“还有一种技术同样可以减少电信号占用的频段带宽,叫做单边调制技术。”
杨山在黑板上画出一个声波的时域图。
“大家看一下我画的图,理想情况下,声波都是沿中轴线上下对称的,当然人声因为存在谐波,上下并不对称。如果我们在滤波的时候去除这些谐波,那么就会得到完美的上下对称的振波,而携带它的电信号载波也会沿基准频率上下对称。”
“这个时候,为了节省电信号载波占用带宽,就可以想办法在调制的时候把基准线的一边振波抹去,这样就节省了一半的带宽,而在解调的时候把抹去的那一半再补回来,形成完整的振波。采用这种技术,理论上可利用的频段带宽中容纳的信道就能增加一倍。这么说大家理解吗?”
“明白,就是把卡车纵向劈开,一边的两轮卡车照样能拉同样货,这样公路上就能同时行驶更多的卡车。”一个坐在前排地上的女孩抢答。
“嗯,非常棒,就是这样。”
“好了,那我继续提问,还能想出什么办法来实现多路复用?”
有了之前的例子,台下回答问题的学生都非常积极,“杨先生,既然连高频的电信号都能传输,那是否可以继续提高频率呢,这样的话就能有更多的频段可以利用。”
杨山摇摇头,“不可以了。即使不考虑在调制技术上的难度也不行。超高频率电信号的长距离传输,面对的困难会放大很多倍,信号细节损失非常严重,而且会涉及到微观世界的一些理论,可能已经不在电子学的范畴了。至少在我所了解的知识里,没有能有效解决的方法。”