由此,我们可推导出如下结论:
1. 若构造二阶常微分方程(1)的任意一个单参数积分曲线族,再建立一个同样以这些积分曲线为解的一阶常微分方程:
(略)
则函数(原文未明确函数符号,此处按上下文保留“函数”表述)必然是一阶偏微分方程(1*)的一个解;
2. 反之,若(略)表示一阶偏微分方程(1*)的任意一个解,则一阶常微分方程(2)的所有非奇异积分,同时也是二阶常微分方程(1)的积分。
简而言之,若(略)是二阶微分方程(1)的一个一阶积分,则(略)是偏微分方程(1*)的一个解;反之亦然[第39页]。因此,二阶常微分方程的积分曲线,同时也是一阶偏微分方程(1*)的特征线。
在当前情形下,我们可通过简单计算得到相同结论:计算后,我们所讨论的微分方程(1)与(1*)可表示为如下形式(略),其中下标表示对(略)的偏导数。由此,上述关系的正确性便显而易见。
前文推导且刚刚证明的“二阶常微分方程(1)与一阶偏微分方程(1*)之间的密切联系”,在我看来,对变分法具有根本性意义。因为,由“积分(略)与积分路径无关”这一事实可推出:
(略)
若将等式左侧积分视为沿任意路径(略)的积分,右侧积分视为沿微分方程(略)的积分曲线(略)的积分。
借助方程(3),我们可得到魏尔斯特拉斯公式:
(略)
其中(略)表示魏尔斯特拉斯表达式,该表达式依赖于(略)。
因此,由于求解过程仅需找到一个“在我们所研究的积分曲线(略)的某邻域内单值且连续”的积分(略),上述推导无需引入二阶变分,仅通过对微分方程(1)应用极线法[第40页],就能直接得到雅可比条件的表达式,并回答“雅可比条件与魏尔斯特拉斯条件(略)相结合,在多大程度上是取得最小值的必要且充分条件”这一问题。
上述推导无需额外计算,即可推广到“存在两个或更多待求函数”的情形,也可推广到“积分是二重积分或多重积分”的情形。例如,考虑在给定区域(略)上的二重积分:
(略)
在通常意义下,其一阶变分(略)等于零,可得到关于两个变量(原文未明确变量符号,此处按上下文保留“两个变量”表述)与(略)的待求函数(略)所满足的着名二阶微分方程:
(略)
另一方面,我们考虑积分(原文未明确积分符号,此处按上下文保留“积分”表述,标注为积分J):
(略)
并探究:应如何将(略)与(略)确定为关于(略)、(略)与(略)的函数,才能使积分J的值与“通过给定闭扭曲线的曲面选择”无关——即与关于变量(略)和(略)的函数(略)的选择无关。
积分J具有如下形式[第41页]:
(略)
而在“问题新表述”所要求的意义下,一阶变分(略)等于零,可得到方程:
(略)
即关于三个变量(略)、(略)与(略)的函数(略)和(略),需满足一阶微分方程:
(略)
若在该微分方程之外,再补充由方程(略)推导得到的偏微分方程(略):
(略)
则“关于两个变量(略)与(略)的函数(略)所满足的偏微分方程(I)”,与“关于三个变量(略)、(略)与(略)的两个函数(略述)和(留白)所满足的两个一阶偏微分方程构成的方程组(标注为方程组(I*))”,它们之间的关系,与“单积分情形下微分方程(1)与(1*)之间的关系”完全类似。
由“积分J与积分曲面(原文未明确曲面符号,此处按上下文保留“积分曲面”表述)的选择无关”这一事实可推出:
(原文未写出推导式,此处按上下文保留空白)
若将等式右侧积分视为沿偏微分方程(原文未明确方程符号,此处按上下文保留“偏微分方程”表述)的积分曲面(原文未明确曲面符号,此处按上下文保留“积分曲面”表述)的积分[第42页];借助该公式,我们可立即得到公式(略):
(略)
该公式在“二重积分变分”中的作用,与前文给出的公式(4)在“单积分”中的作用相同。借助该公式,我们现在可回答“雅可比条件与魏尔斯特拉斯条件(原文未明确条件符号,此处按上下文保留“魏尔斯特拉斯条件”表述)相结合,在多大程度上是取得最小值的必要且充分条件”这一问题。
上述推导与A.克内泽尔(A. Kneser)[53]从其他视角出发对魏尔斯特拉斯理论的修正表述密切相关。魏尔斯特拉斯在推导极值的充分条件时,采用了“通过固定点的方程(1)的积分曲线”;而克内泽尔则反过来,利用任意一个“由这类积分曲线构成的单参数族”,并为每个这样的曲线族构造了“某偏微分方程的一个特征解”——该偏微分方程可视为雅可比-哈密顿方程的推广。
前文提及的这些问题仅是众多数学问题的范例,但足以表明当今数学科学的内容何其丰富、多样且广博。由此引发我们思考:数学是否会重蹈其他学科的覆辙——分裂成一个个独立分支,各分支研究者彼此难以理解,分支间的联系也愈发松散?我既不相信会出现这种情况,也不希望如此。在我看来,数学科学是一个不可分割的整体,如同一个有机体,其生命力依赖于各部分之间的紧密联系。
尽管数学知识纷繁多样,但我们仍能清晰地察觉到其中逻辑方法的相似性、数学整体思想的关联性,以及不同分支间大量的类比关系。我们还会发现,一门数学理论的发展越深入,其结构就越和谐统一,而此前相互独立的数学分支之间,也会逐渐显现出意想不到的关联。因此,随着数学的不断拓展,其有机整体性不仅不会消失,反而会愈发清晰地展现出来[第43页]。
但有人会问:随着数学知识的不断扩展,单个研究者最终是否必然无法掌握这门学科的所有分支?对此,我想指出一点:数学科学有一个根深蒂固的特点——每一次真正的进步,都会伴随着更敏锐工具的发明与更简洁方法的提出,而这些工具与方法,又能帮助我们理解过往的理论,并摒弃陈旧复杂的推导过程。因此,研究者只要掌握了这些更敏锐的工具与更简洁的方法,就能比在其他任何学科中更轻松地穿梭于数学的各个分支。
数学的有机统一性植根于其学科本质——因为数学是所有自然现象精确知识的基础。愿新世纪能为数学带来富有天赋的大师,以及众多热忱执着的追随者,让数学得以圆满完成这一崇高使命[第44页]。