UU文学 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

关于“连续性”:目前来看,这一假设无疑需要保留——至少从几何与算术的应用角度出发是如此,因为在这些应用中,相关函数的连续性是“连续性公理”的推论。但另一方面,“定义群的函数具有可微性”这一假设,在几何公理中只能以“牵强且复杂”的方式表述。

因此,问题就产生了:能否通过引入合适的新变量与新参数,将任意群都转化为“定义函数可微”的群?或者至少在一些简单假设的帮助下,将群转化为“可应用李的方法”的群?

根据李提出(但由舒尔(Schur)首次证明)的一个定理[10][11]:当群满足“可迁性”,且假定“定义群的函数存在一阶及某些二阶导数”时,上述“转化为解析群”的过程总是可行的。

我认为,对于“无限群”,研究类似问题也具有重要意义。此外,这还会将我们引入“函数方程”这一广阔且有趣的领域——此前,人们研究函数方程时,通常都会假定涉及的函数具有可微性。

尤其是阿贝尔(Abel)曾巧妙处理过的函数方程[12]、差分方程,以及数学文献中出现的其他方程,它们本身并未直接要求“伴随函数必须可微”。我在变分法中寻找某些存在性证明时,就曾直接遇到这样的问题:如何由“差分方程的存在性”证明“所讨论函数的可微性”。

因此,在所有这些情况下,都会出现一个共同问题:在不假定“函数可微”的前提下,通过适当修正,原本针对“可微函数”得出的结论,能在多大程度上仍然成立?

还需补充的是,闵可夫斯基在其上述着作《数的几何》中,以函数方程

f(x_1 + y_1, x_2 + y_2, \\dots, x_n + y_n) \\leq f(x_1, x_2, \\dots, x_n) + f(y_1, y_2, \\dots, y_n)

为起点,实际上成功证明了“该函数存在某些微商(导数)”。

但另一方面,我想强调一个事实:确实存在“仅以非可微函数为解”的解析函数方程。例如,我们可以构造一个“一致连续但非可微的函数f(x)”,它是以下两个函数方程的唯一解:

f(x + \\alpha) - f(x) = g(x)

f(x + \\beta) - f(x) = h(x)

其中\\alpha与\\beta是两个实数,且对所有实数x,g(x)与h(x)都是“正则解析的一致函数”。

构造这类函数的最简单方法,是借助三角级数,采用与博雷尔(borel)类似的步骤——皮卡(picard)近期指出[13],博雷尔曾用这种方法构造出“某解析偏微分方程的双周期非解析解”。

[10]李-恩格尔(Lie-Engel),《变换群理论》(theorie der transformationsgruppen),第3卷,莱比锡,1893年,第82、144节。

[11]《论表示有限连续变换群的函数的解析性质》(Ueber den analytischen charakter der eine endliche Kontinuierliche transformationsgruppen darstellenden Funktionen),《数学年刊》(math. Annalen),第41卷。

[12]《全集》(werke),第1卷,第1、61、389页。

[13]《数学分析中的若干基础理论》(quelques théories fondamentales dans lanalyse mathématique),克拉克大学演讲(conférences faites à clark University),收录于《综合科学评论》(Revue générale des Sciences),1900年,第22页。

6. 物理学公理的数学处理

对几何学基础的研究,引发了这样一个问题:像处理几何学那样,借助公理来处理那些数学占据重要地位的物理学科;其中最主要的是概率论和力学。

关于概率论的公理[14],在我看来,有必要在对其进行逻辑研究的同时,为数学物理(尤其是气体分子运动论)中的平均值方法,提供严格且完善的推导。

物理学家们已经开展了多项关于力学基础的重要研究;我在此提及马赫[15]、赫兹[16]、玻尔兹曼[17]和福尔克曼[18]的着作。

因此,非常有必要让数学家也参与到力学基础的探讨中来。

例如,玻尔兹曼关于力学原理的研究提出了一个问题:将他仅简要提及的、从原子论观点推导到连续体运动定律的极限过程,进行数学上的完整推导。

反过来,人们也可尝试从一套公理出发,通过极限过程推导出刚体运动定律;这套公理基于“充满整个空间的物质其状态连续变化”的思想,而物质的状态由参数来定义。

因为不同公理系统之间的等价性问题,在理论层面始终具有重要意义。

若要以几何学为范本处理物理学公理,我们首先会尝试用少量公理,涵盖尽可能广泛的物理现象类别,随后通过添加新公理,逐步推导出更具特殊性的理论。

与此同时,李(Lie)的无限变换群深刻理论,或许能为分类原则提供依据。

数学家不仅要关注那些贴近现实的理论,还应像在几何学中那样,关注所有逻辑上可能成立的理论。

他们必须时刻保持敏锐,以全面梳理从所设公理系统中可推导出的全部结论。

此外,数学家有责任在每一种情况下,精确验证新公理与先前公理是否相容。

物理学家在其理论发展过程中,常常会因实验结果而被迫提出新假设,但对于这些新假设与旧公理的相容性,他们仅依赖实验或某种物理直觉来判断——这种做法在严格的理论逻辑构建中是不可接受的。

在我看来,验证所有假设相容性的工作也十分重要,因为为获得这种验证,我们必然会被迫对各公理进行精准表述,而这是最有效的推动方式。

到目前为止,我们仅探讨了与数学学科基础相关的问题。

事实上,对一门学科基础的研究始终极具吸引力,而检验这些基础也始终是研究者面临的首要问题之一。

魏尔斯特拉斯曾说:“始终要牢记的最终目标,是达成对学科基础的正确理解[19]。

但显然,要在科学领域取得进展,对特定问题的研究必不可少。”

的确,要成功研究一门学科的基础,就必须深入理解其特殊理论。

只有彻底且详细地了解建筑用途的建筑师,才能为建筑奠定坚实的基础。

因此,我们现在转向数学各分支的特定问题,首先来探讨算术与代数。

[14]参见博尔曼(bohlmann)的《论保险数学》(Ueber Versicherungsmathematik),收录于克莱因(Klein)与基克(Kiecke)编撰的《论应用数学与物理学》(Ueber angewandte mathematik und physik),莱比锡,1900年。

[15]马赫(mach),《力学及其发展》(die mechanik in ihrer Entwickelung),莱比锡,1901年,第4版。

[16]赫兹(hertz),《力学原理》(die prinzipien der mechanik),莱比锡,1894年。

[17]玻尔兹曼(boltzmann),《力学原理讲义》(Vorlesungen uber die principe der mechanik),莱比锡,1897年。

[18]福尔克曼(Volkmann),《理论物理学研究导论》(Einfuhrung in das Studium der theoretischen physik),莱比锡,1900年。

[19]《数学年刊》(math. Annalen),第22卷,1883年。

7. 某些数的无理性与超越性

埃尔米特(hermite)关于指数函数的算术定理,以及林德曼(Lindemann)对该定理的推广,无疑会受到历代数学家的推崇。因此,正如A.胡尔维茨(A. hurwitz)已在两篇有趣的论文[20]《论某些超越函数的算术性质》(Ueber arithmetische Eigenschaften gewisser transzendenter Funktionen)中所做的那样,沿着这条已开辟的道路继续深入研究,便成为一项亟待开展的任务。故而,我想概述一类问题,在我看来,这类问题应作为接下来的研究重点。在分析学中,某些重要的特殊超越函数,会在自变量取某些代数值时得到代数函数值,这一现象在我们看来尤为显着,值得深入探究。事实上,我们通常认为,即便自变量仅取代数值,超越函数的值一般也应为超越数;尽管众所周知,存在一些整超越函数,即便对所有代数自变量,其函数值均为有理数,但我们仍有充分理由认为,例如指数函数(文中未明确写出具体形式,此处按上下文保留“指数函数”表述),虽显然在自变量取所有有理值时函数值为代数数,但另一方面,当自变量取无理代数值时,其函数值始终为超越数。我们也可将该论断用几何形式表述如下:

在一个等腰三角形中,若底角与顶角的比值为代数数但非有理数,则底边与腰长的比值始终为超越数。

尽管该论断表述简洁,且与埃尔米特和林德曼已解决的问题具有相似性,但我认为,要证明这一定理难度极大;同样难以证明的还有下述命题:

对于代数底数(文中未明确写出具体符号,此处按上下文保留“代数底数”表述)和无理代数指数(文中未明确写出具体符号,此处按上下文保留“无理代数指数”表述),表达式(文中未明确写出具体形式,此处按上下文保留“表达式”表述),例如数(文中未明确写出具体数,此处按上下文保留“数”表述)或(文中未明确写出具体数,此处按上下文保留“或”后的留白),始终表示一个超越数,或至少是一个无理数。

可以肯定的是,要解决这些及类似问题,我们必须借助全新的方法,并且需要对特殊无理数与超越数的本质形成新的认识。

[20]《数学年刊》(math. Annalen),第32卷,1888年。

8. 素数问题

近来,阿达马(hadamard)、德拉瓦莱-普桑(de la Vallée-poussin)、冯·曼戈尔特(Von mangoldt)等人在素数分布理论研究中取得了重要进展。然而,要完全解决黎曼(Riemann)在其论文《论小于给定数值的素数个数》(Ueber die Anzahl der primzahlen unter einer gegebenen Gr?sse)中提出的问题,仍需证明黎曼一个极为重要的论断的正确性,即:由级数(文中未明确写出具体级数,此处按上下文保留“级数”表述)定义的函数(文中未明确写出具体函数符号,此处按上下文保留“函数”表述)的所有零点,除了众所周知的负整数实零点外,其余零点的实部均为(文中未明确写出具体数值,此处按上下文保留“实部均为”后的留白)。一旦成功证明这一论断,接下来的问题便在于更精确地验证黎曼提出的“小于给定数值的素数个数”的无穷级数公式,尤其要确定:小于数值(文中未明确写出具体符号,此处按上下文保留“数值”表述)的素数个数与(文中未明确写出具体对数形式,此处按上下文保留“与”后的留白)的积分对数之间的差值,在(文中未明确写出具体变量,此处按上下文保留“在”后的留白)中,其无穷大的阶数是否确实不超过(文中未明确写出具体阶数,此处按上下文保留“不超过”后的留白)[21]。此外,我们还需确定:在统计素数个数时所观察到的素数偶然聚集现象,是否确实与黎曼公式中那些依赖于函数(文中未明确写出具体函数符号,此处按上下文保留“函数”表述)的首个复零点的项有关。

在对黎曼素数公式进行详尽研究之后,或许我们终将有能力尝试严格证明哥德巴赫问题[22],即:每个整数是否都可表示为两个正素数之和;进而研究另一个着名问题,即:是否存在无穷多对差值为(文中未明确写出具体差值,此处按上下文保留“差值为”后的留白)的素数对;甚至研究更具一般性的问题,即:对于线性丢番图方程(文中未明确写出具体方程,此处按上下文保留“线性丢番图方程”表述)(其中给定的整系数两两互素),是否总能找到素数解(文中未明确写出具体解的符号,此处按上下文保留“素数解”表述)和(文中未明确写出具体解的符号,此处按上下文保留“和”后的留白)。

但在我看来,下述问题同样有趣,且或许适用范围更广:将有理素数分布的研究成果应用于给定数域(文中未明确写出具体数域符号,此处按上下文保留“数域”表述)中的理想素数分布理论——这一问题的研究方向是考察与该数域相关的、由级数(文中未明确写出具体级数,此处按上下文保留“级数”表述)定义的函数(文中未明确写出具体函数符号,此处按上下文保留“函数”表述),其中求和范围遍历给定数域(文中未明确写出具体数域符号,此处按上下文保留“数域”表述)的所有理想(文中未明确写出具体理想符号,此处按上下文保留“理想”表述),而(文中未明确写出具体符号,此处按上下文保留“而”后的留白)表示该理想的范数。

在此,我还可提及数论中的另外三个特殊问题:一个涉及互反律,一个涉及丢番图方程,还有一个来自二次型领域。

[21]参见h.冯·科赫(h. von Koch)即将发表于《数学年刊》的一篇文章[第55卷,第441页]。

[22]参见p.施泰克尔(p. St?ckel):《论哥德巴赫经验定理》(uber Goldbachs empirisches theorem),《哥廷根皇家科学协会通讯》(Nachrichten d. K. Ges. d. wiss. zu G?ttingen),1896年;以及朗道(Landau)的相关文章,同刊,1900年。

UU文学推荐阅读:替嫁王妃重生后,全家被她拿捏了玄幻:妖兽大陆雨落寒烟穿书日常带娃经商一见钟情!掉入偏执总裁的陷阱一道逸仙重生之末世寻乡这个灵修有点狠人在提瓦特,开局探案震惊水神综漫拯救者斗魔圣界HP:被两只大金毛赖上了怎么办天师决火影:漩涡一族一统忍界!无夜虚空第九封圣天灾逃荒路上:她带着空间杀疯了火影:日向替死鬼觉醒亚人血脉合欢,银杏,彼岸花被疯批校草盯上的日日夜夜救命!快穿系统逼我跟疯批谈恋爱综影视之从如懿传开始当杀手遇上刺客快穿:漂亮老婆又被抱走了星穹铁道,驶向远方overlord:洛尔斯达圣君校庆晚宴,一见倾心!重生嫁给乞丐后,我做了皇后别人穿越当皇后,我当秦始皇近臣我是檀健次的檀力球规则怪谈:开局就成了凶手丝芭之重生回到2013后入团了overlord:圣庭之主触及真心!迷雾玫瑰快穿之大佬自救系统快跑!狗系统有毒被女皇招安以后穿越亮剑卖武器战锤很绝望?俺觉得很欢乐啊快穿之大佬纯情且撩人!拥有影遁的我,内心阴暗点怎么了战神王爷的重生小王妃重生八零:学霸娇妻是神医桎界梏域穿成炉鼎不慎让合欢宗成最强战力重生到七十年代,张三妞的新人生咸鱼木得感情捡了个锦鲤闺女,炸翻整个京城豪门禁忌:邵总你的娇妻已养成
UU文学搜藏榜:【HP】赫奇帕奇的美食魔法穿越,成为宝可梦大师我在遮天修仙长生地府就业压力大,孟婆下岗卖炸串穿成星际假少爷,我和少将HE了快穿之靠生子称霸后宫冰火帝尊别闹!你真辞职回家种田了?躺平到黄泉开始:哎呀,挂来了HP只想摆烂的我却融化了冷蝙蝠她一刀两断,他如疯如魔被柳如烟渣后,我穿越了一人盗墓:卸岭派追女诡事重回吾妻十二那年四合院:秦京茹的幸福生活变身从古代开始灵气复苏军婚蜜爱:八零老公宠上瘾神兵小将之长戟镇天下过期勇者的退休生活女公务员闪婚豪门小奶狗之后我将在星际有上千个后代月下人清淑叔叔!你越界了母爱如山柳青言长官你老婆命太硬了打穿漫威,这么无敌真是抱歉了诡异:开局驾驭压制诡手重生年代:恶毒后妈空间养崽逆袭游戏王:我和我的b三狼渊轩梦重生九十年代,中专生的逆袭人生各类男主短篇合集娱乐之天才少女我,赛博朋克2077低配帝皇将军辞诸天拯救计划穿越后我成了病娇王爷的眼中钉坎特洛特高中的倒霉侦探乾坤造化:万物同流,生生不息快穿之拯救爱情计划宿主腿玩命美,迷的反派找不到北抛妻弃子你做绝,我权倾朝野又认亲?病娇世子家的废物美人震惊,假千金有八百八十八个马甲我看上了哥哥的战友小花仙冰雪传说养成系女神:听劝后,我成了天后穿越成被追杀的假公主后直接开演穿越海贼成为赤犬千少的小甜妻
UU文学最新小说:崩坏:她的舰桥禁止告白去部队相亲,对象竟是我首长前夫我在猛鬼宿舍开魔盒大小姐们的女儿我实在无福消受啊青舟异闻录祭品自述白切黑的千金被狼盯上了穿越傻柱携系统怼人我是主角亲妈,助他立业成家青冥碎的魂我那鲜为人知的秘密3帅哥请自重,你只是个玩偶斗罗:开除后,史莱克跪求我回去从漫威开始的多元之旅别人神墟我神道,敢弄死我就放嘲面具下,维和指挥长他心动了!老房着火:太傅家的小福妻娇又甜呼吸而已,他们却说我手段了得战锤原体:黄金王座有我一份七零空间,搬空后钱钱一箱又一箱晓海梦寻仙病娇男主被嫌弃?都闪开我来奥特,开局遇储星团玉佩有灵神凰毒妃:残王,别乱动白月光她持手术刀归来预知未来,我将一次不败!吃吃吃,都来吃循环凶案:来自地狱的重复杀机清穿爆改胤礽,太子妃一心搞基建卿卿如月,湛如目大怪兽格斗:我成了怪兽训练师崩坏:社畜舰长,病娇女武神勿扰从孤女开始,江山与美男都笑纳赛尔:天尊不是街溜子种田文女配怎么了?要尊重命运从微尘到星穹电竞:疯批AD他只听辅助的朕的后宫为何会这样?公主多夫娱乐圈:穿越一千次,归来已无敌我是皮卡丘:与小智的巅峰之路七零兵王:夫人来自末世那年盛夏,那年我们!综影视,碎魂织星凤起九霄:摄政王的猎心毒宠三角洲:成为白毛萝莉被雷斯收养开局绝境,我以战歌撼九天江南八怪我的剑不太对劲