UU文学 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

“放心吧!这种小事,我不会在意的。”

郭浩笑了笑,朝着眼前二人说到。

“好吧。”

马鑫有些担忧的点了点头。

“走了!”

说着郭浩离开了宿舍。

来到图书馆。

沈落雁果然已经坐在那里了。

“网上的事情……”

郭浩刚刚坐下,此时沈落雁已经抬起头,她的眼神之中充满了担忧,看着郭浩。

“你也刷微博啊?”

看着沈落雁的表情,郭浩微笑着问道。

“不是,是赵雨跟我说的,赵雨让我看了一些评论,你没事吧?”

沈落雁迟疑的看着郭浩问道。

“放心吧,我没事。”

郭浩笑了笑,看着眼前的沈落雁说到。

“不过是些小事,被网络上一些未知生物给攻击而已,这种事情以后还会有很多的。”

“好吧。”

沈落雁点了点头,她眼神之中带着担忧的神色,看着一旁的郭浩,明显她并没有就此放下心来。

只是,她一般不会反驳郭浩。

看着沈落雁的表情,郭浩面上微微有些无奈。

“放心吧!”

郭浩苦笑着朝着沈落雁说到。

“我前天不是出了一次学校吗?”

“嗯。”

沈落雁点了点头。

“我那次是去见大领导了!”

郭浩笑了笑,小声朝着沈落雁说到。

沈落雁眼神之中露出惊讶的神色,看着面前的郭浩。

“大领导???”

“对!”

郭浩笑着点了点头。

“现在你算是放心了吧?”

听到郭浩的话,沈落雁点了点头,既然有大领导撑腰的话,那郭浩肯定是没事了。

对于郭浩的话,沈落雁基本从不质疑。

“那网上的东西你就不要去看了,他们说的太难听了!”

说着话,沈落雁面上露出生气的神色。

嘴巴鼓起的生气模样,在郭浩看起来却十分的可爱。

他轻轻揉了揉沈落雁的头发,面上带着温暖的微笑。

“放心吧!我不会把网上那些人的话放在心上的,谁攻击谁,还不一定呢!”

“好!”

沈落雁点了点头。

她认真的看了郭浩几眼之后,继续开始看书。

郭浩没有急着看书。

现在的他已经过了那个需要努力看书的新手阶段了。

一年时间,郭浩不仅仅刷了系统要求的一百本书,论文也刷了很多篇了,还有很多配套和相关的书籍。

他的知识储备,已经达到了一个不低的水平了。

静静地看了一会儿沈落雁。

郭浩眼神之中闪过一丝恍惚。

自己对沈落雁,是有影响的吗?

郭浩不知道。

但是沈落雁这个妹子,真的非常努力。

重生是自己最幸运的事,而重生之后,能够和沈落雁在一起,则是自己第二幸运的事情了。

郭浩看了一会儿沈落雁之后,渐渐收敛了心思。

没有看网络,他继续开始计算华林猜想。

任何正整数都可表为不超过4个整数的平方和,如:6=2^2+1^2+1^2,14=3^2+2^2+1^2,等等;如果把不足4个的加上0^2,如13=3^2+2^2+0^2+0^2,则任一正整数可表为4个整数的平方和.

还有,任一正整数可表为9个自然数的立方和,19个自然数的四次方和,37个自然数的5次方和.这里自然数包括0.

这一猜想可表述为一般形式:对任一正整数N,存在数r(m),使N可表为r个自然数的m次方和,即 N=(x1)^m+...+(x[r])^m

1909年,希尔伯特证明了一般形式是正确的,解决了r(m)的存在性问题.但r(m)的最小值是多少呢?

这就是郭浩目前需要解决的问题。

除了华林猜想以外,一直到目前,由于g(k)的值严重依赖于正整数较小时的情况,人们提出了一个更强的问题,求对于每个充分大的正整数,可使它们分解为k次方数的个数G(k)。此问题进展较慢,至今G(3)仍无法确定。

这个问题与华林问题拥有极高的相关性,也是目前数学界前沿需要解答的问题。

郭浩低着头,皱着眉头看着眼前的稿纸。

缓缓写出了一行算式。

关于这个猜想,郭浩之前确实有一些灵感,但是真正开始推进这个猜想的时候,郭浩就感觉到了阻碍重重。

也是,关于华林问题,很多顶尖的数学家都有过研究。

包括陈景润老先生在内,很多顶尖的数学大佬,对这个问题多少都是有些涉猎。

但是他们很多都是取得了一些成果。

不过但r(m)的最小值是多少呢?

至今依旧没人知道。

这一个多月以来,郭浩在这个问题上,算是有了一些研究,但进展还是很缓慢,一直都没有触碰到核心的点。

陈景润老先生他们的论文,郭浩已经看了不止一遍了。

陈老用的是圆法来解决这个问题。

只可惜陈老只证明到了g(5)=37。

郭浩试着从陈老的角度开始往下延展,延伸,从圆法的角度来看,这个问题算到g(5)=37,已经是极限了,没办法继续往下算了。

是解题方法的问题么?

郭浩若有所思。

看着面前的问题描述,还有数学公式。

莫名的,郭浩想起了数论领域另外的一个更加着名的数学猜想。

哥德巴赫猜想。

这个问题的表述为任一大于5的整数都可写成三个质数之和。(n>5:当n为偶数,n=2+(n-2),n-2也是偶数,可以分解为两个质数的和;当n为奇数,n=3+(n-3),n-3也是偶数,可以分解为两个质数的和)

华林问题的表述,在某种程度上,倒是和哥德巴赫猜想,有种异途同归的妙处。

陈老先生改进了筛法,并且将之用在了哥德巴赫猜想上面,并证明了“1+2”,即他证明了任何一个充分大的偶数,都可以表示为两个数之和,其中一个是素数,另一个或为素数,或为两个素数的乘积,而这被称为“陈氏定理”。

因此,名震世界。

UU文学推荐阅读:港片:我还没出位,老大先出殡了皓月和正义重生18:从借钱炒期货开始暴富四合院:从卫生员开始的快乐人生民间高手,从街头卖艺开始让我住在你的心里终极一班:我魅魔被美女们包围了世界大杂烩,主角大乱斗是你要分手的,我走了你又哭啥?商海激情:触底反弹之超越剑御九霄:昆仑秘境传重生之打造属于我商业帝国驭手一首青花瓷,我,掀起了国风狂潮东星乌鸦兑变,注重武力和谋略!灵气复苏,从虚拟现实开始开局继承九重雷刀,我横推万族我把校花渣了,她还觉得我深情妃礼勿视,王爷你也重生了山村尤物俏美妇都穿越了,谁还上班啊转职召唤师,开局十连SSS天赋神豪的学霸生涯诸神来犯,我在现代重演神话都练纯阳功了,你给我婚书?一路生香四合院,贾家老大女尊高武:从幼儿园开始拒绝表白兽血沸腾22012就有系统,随便赚钱我是都市之无敌武神:李昊天才高手血量1滴盾1万,你就这么玩狂战重回八一:长嫂的奋斗让你建设山村,你把娱乐圈炸了王者归来小说洛天重生之女配的美满人生社牛直播:去婚礼亮出嫂子小视频无敌之后,我选择了下山召唤之我真没想统治世界刚获得永生,就判无期徒刑强龙下山,回归都市无敌手重生1990:九龙城寨逆袭大亨天才神医混花都成仙后:我竟飞升不了彩云下的约定绝境吃鸡重生之八十年代我做镇长荒岛生死:最强佣兵带美求生前世仇人绿我,今生抢他女人!
UU文学搜藏榜:重生之从做个好爸爸开始人在斗罗,开局被比比东活埋皇后成长手札不随心所欲能叫重生吗?掌欢完美战兵四合院:这个保卫员坏,痞,帅!梦游妈咪:谁是我爹地千树万树情话开疯狂从2000开始叫我女王(GL)赘婿之杀神回归县城青年之入世萌妻羞羞:BOSS,慢点撩!松小姐今天喝酒了吗千金大佬她slay全场小乞丐掀翻三界高武:刀镇星空故事无限我真不想当女主角都市霸道医仙人间凶狗直播:穿书炮灰反成人生赢家皇上今天掉马了吗重生七零我靠种田暴富了叶君临李子染全文免费阅读笔趣阁退婚后我嫁给了渣男他叔头条婚约都市崛起之开启万界交易序列为零东京泡沫后的文娱时代逍遥渔场妖孽男神在花都最废女婿战神她在娱乐圈杀疯了胭尘团宠寨主种田忙开局我被系统一直坑地府微信群军少,有点喜欢你娱乐之中年危机错婚试爱病娇惹不起重生2014:一个人的豪门想支持乡村教育,却成为商业大佬逍遥明星娶夫不易[穿书]重回1981从退婚开始不凡兵王我的篮球生涯养废青梅的我,只好负起责
UU文学最新小说:替弟从军五载,归来全家夺我军功?全球高武:我背后一口棺,专业的捡尸出道十年查无此人,圈内全是我前任?重回1960:渔猎白山松水我和富二代灵魂互换城市求生之牛小二的奇葩人生四合院:易中海的养老心思,被我扒个底婢女扶瑶我带小萝莉找上门,校花无痛当妈尚书千金投井后通灵?全京城慌了神医农女:我靠种田富甲天下七零随军:穿书作精她撩又甜重生后另择良婿,王爷红眼求名分踏出女子监狱后,三千囚徒誓死追随都市:女儿重生后,我成互联网教父了重生08:从拿下极品校花开始重生70,从给妻女煮碗白粥开始仕途风云:升迁消失三年回归,九个女总裁为我杀疯了大国军工:重生1985,为国铸剑SSS警报!真龙踏出女子监狱!沪上名媛随军当晚,长官他破戒了大国房枭重生归来,我是战神也是首富女子监狱归来,我无敌于世知青下乡:从当赤脚医生治疗中风开始召唤之王:我手搓九星大魔神,你哭什么分开四年,容总他又带崽来求婚了捡漏我是认真的,空间里全是帝王绿复读一年,你攒了7个前女友?每日情报,从洗浴中心拯救校花开始!重生七八:从上山采药开始致富重生76:觉醒空间,宠妻致富我都要疯了吧,谁家实习警察一等功挂满了神医绯途一天一骷髅,我稳坐枯骨王座职场:让你去养猪没让你日赚十个亿校花你别哭,教父来投资你断亲后,我鉴宝天师身份震惊全球暗区提现成神豪,前女友哭着求复合疯了吧,校花给我生了三个娃六零:开局拒绝扶弟魔,我逆天改命重回八零:谁说女儿都是赔钱货?督军爹爹开门,福气包来噜!锦画昭昭神医归来:十个女囚为我杀疯了!年代:重生1958神级选择:我的奖励不对劲!被分手后,我反手契约白虎校花!我!系统!懂?!