UU文学 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

第 210 章 三角换元法之探

又一日,学堂之内,戴浩文再开新篇。

戴浩文缓声道:“今日为师要与尔等讲授另一奇妙之法,名曰三角换元法。”

众学子皆屏气凝神,静待下文。

李华拱手问道:“先生,此三角换元法又是何意?”

戴浩文微笑答道:“且看,若有方程 x2 + y2 = 1,吾等可设 x = cosθ,y = sinθ,此即为三角换元。”

张明面露疑惑:“先生,为何如此设之?”

戴浩文耐心解释道:“诸君可知三角函数之特性?cos2θ + sin2θ = 1,恰与吾等所给方程相符。如此设之,可使求解之路径明晰。”

王强问道:“那若方程为 x2 + 4y2 = 4,又当如何?”

戴浩文道:“此时,可设 x = 2cosθ,y = sinθ。如此,原方程便化为 4cos2θ + 4sin2θ = 4,正合题意。”

赵婷轻声道:“先生,此设颇有巧妙之处。”

戴浩文点头道:“然也。再看若有式子 √(1 - x2),吾等设 x = sinθ,则此式可化为 √(1 - sin2θ) = cosθ 。”

李华思索片刻道:“先生,此换元法于解题有何妙处?”

戴浩文笑曰:“其妙处众多。若求函数之最值,或化简复杂之式,皆能大显身手。譬如,求函数 x + √(1 - x2) 之值域。”

众学子纷纷低头思索。

戴浩文见状,提示道:“已设 x = sinθ,代入可得 sinθ + cosθ 。诸君可还记得两角和之公式?”

张明恍然道:“先生,吾记得,sinθ + cosθ = √2sin(θ + π\/4) 。”

戴浩文赞道:“善!由此可知其值域为 [-√2, √2] 。”

王强又问:“先生,若式中含分式,又当如何?”

戴浩文道:“莫急,若有式子 (1 - x2) \/ (1 + x2) ,设 x = tanθ ,则可化简求解。”

赵婷道:“先生,此中计算恐有繁难之处。”

戴浩文道:“不错,然只要步步为营,细心推之,必能解出。”

说罢,戴浩文在黑板上详细演示计算过程。

......

如此讲学许久,学子们对三角换元法初窥门径。

戴浩文又道:“今留数题,尔等课后细细思索。若有不明,来日再论。”

学子们领命而去,皆欲深研此奇妙之法。

数日之后,众学子再次齐聚学堂。

戴浩文扫视众人,缓声问道:“前几日所授三角换元法,尔等可有研习?”

学子们纷纷点头,李华率先说道:“先生,学生课后反复思索,略有心得,然仍有诸多不明之处。”

戴浩文微笑道:“但说无妨。”

李华拱手道:“若方程为 9x2 + 16y2 = 144,该如何进行三角换元?”

戴浩文答道:“可设 x = 4cosθ,y = 3sinθ。如此一来,原方程化为 16cos2θ + 9sin2θ = 144,与原式契合。”

王强接着问道:“先生,那对于形如 √(x2 - 2x + 1) 这样的式子,又当如何三角换元?”

戴浩文耐心解释道:“先将其化为 √((x - 1)2) = |x - 1| ,再设 x - 1 = t ,若要三角换元,可令 t = sinθ 。”

赵婷疑惑道:“先生,为何有时设 x = cosθ ,有时又设 x = sinθ 呢?”

戴浩文道:“此需视具体问题而定。若方程或式子之形式与 cosθ 或 sinθ 之特性相关,便按需设之。”

张明道:“先生,三角换元法在求定积分时可有应用?”

戴浩文点头道:“自然有。譬如求∫(0 到 1) √(1 - x2) dx ,设 x = sinθ ,则可将其化为三角函数之积分,求解更为简便。”

说罢,戴浩文在黑板上详细推演计算过程。

“诸位且看,如此换元之后,积分上下限亦需相应变换。”

学子们目不转睛,仔细聆听。

王强道:“先生,那若遇复杂之复合函数,可否用三角换元?”

戴浩文笑曰:“只要能寻得恰当之替换关系,未尝不可。就如函数 f(x) = √(2 - x - x2) ,先将其内部配方,再进行三角换元。”

戴浩文边讲边写,学子们不时点头,似有所悟。

李华又问:“先生,三角换元法与均值换元法可有相通之处?”

戴浩文沉思片刻,道:“二者皆为换元之法,旨在简化问题。均值换元常以均值为桥梁,而三角换元则借助三角函数之特性。然具体运用,需依题而定。”

......

戴浩文滔滔不绝,讲解不停,学子们或问或思,气氛热烈。

不知不觉,日已西斜。

戴浩文轻咳一声,道:“今日所讲,尔等回去需多加温习。数学之道,在于勤思多练,方能融会贯通。”

学子们躬身行礼:“谨遵先生教诲。”

众人散去,然对三角换元法之探索,方兴未艾。

又过数日,课堂之上。

戴浩文道:“今来考查一番尔等对三角换元法之掌握。”

遂出一题:求函数 y = x + √(2 - x2) 的最大值。

学子们纷纷提笔计算。

片刻后,赵婷起身道:“先生,学生设 x = √2 cosθ ,解得最大值为√2 。”

戴浩文微微颔首:“不错。那再看此题,若 x、y 满足 x2 + y2 - 2x + 4y = 0 ,求 x - 2y 的最大值。”

众学子再度陷入沉思。

张明道:“先生,可否设 x - 2y = z ,将其转化为直线与圆的位置关系,再用三角换元求解?”

戴浩文抚掌大笑:“妙哉!果能举一反三。”

就这样,在戴浩文的悉心教导下,学子们在三角换元法的海洋中不断探索,学问日益精进。

......

时光荏苒,学子们在数学的世界里越走越远,而三角换元法也成为他们攻克难题的有力武器。

UU文学推荐阅读:三国,我妻吕布,在线带飞!明末之木匠天子虚构三国太子我啊,最喜欢做好事了影视从海豹突击队开始从我是特种兵开始嘲讽成神应如妖似魔独步惊华:绝世倾城妃猎天争锋半个医士成皇帝我在影视世界和主角抢机缘时空穿越者的传奇之旅特工穿古代神秘婴儿,开局遭追杀唐太宗李世民命系我手俺老爹是程咬金大汉帝祚红楼之开局尤氏找上门仙唐:我开局锻造斩仙葫芦公子出巡唐朝小白领大明1840亮剑:一个旅我就敢打太原从屯田开始回到大汉打天下穿越之从小族长开始争霸天下爱乱世三国志从一艘战列舰开始打造无敌舰队梁臣美景夜公子大唐:误会了我不是你爹!穿越水浒的医者大秦:我真的不想当太子啊!明末枭雄贞观之银锤太保战国小大名乱三国:毒士千里驹,毒火攻心三国秘事第二部三国:败家从忽悠曹操开始唐逗卿卿日常之权倾天下魂穿风流八皇子超凡三国之开局天下第一第一权臣之路三国秘事第三部扛上妖孽太子爷大秦:无双皇子,开局掌掴嬴政大乾:帝国独裁者赘婿皇帝,开局超度十万反贼我带着空间戒指:穿越到1939陛下快跑吧,三皇子进京了三国:开局获得绝世武力
UU文学搜藏榜:三国之水浒点将三国:让你镇压反贼,没让你当反贼三国从救糜夫人开始我要改变历史!大汉女副将春秋大梦之白日做梦赝品太监流不尽的血三国:组建最强武将集团重生太子,开局竟劝弟弟们抢皇位我的抗战不一般靖难攻略魔法朋克大唐第一衙内盛宠毒女风华人在亮剑,我的麾下猛将如云武道剑修林辰薛灵韵穿越古代灾年,我有一座现代都市!我的帝国无双三国:张角师侄,我快权倾朝野了我在曹营当仓官我怀疑师妹是修仙者号外大明优秀青年日月光明:打造巅峰大明军统财神爷听明朝大佬们吹牛扯淡妙影别动队伸什么冤,全拉出去斩了开局成为诸葛亮师弟抗战:签到军事基地成晋西北霸主农家子弟科举路:逆袭命运翰林郎天国拯救:骑士之途南明太子复仇录造反,从辅佐美艳太后开始嫡妃当宠绯色豪门:高冷总裁私宠妻海权时代红楼大贵族决死军师傻驸马汉室风云录抗战兵王之叫我魏和尚九皇霸爱:爱妃十三岁抗日之战狼从西汉开始摆烂穿越到骨傲天新明史一等战功崇祯十七年秋
UU文学最新小说:长安新火穿越大明,让大明屹立山巅无限兵源:古代战场的绝对掌控者历史奇人传铁血新华夏:龙腾寰宇一品悍臣轮回井:渣男劫大秦万年之赳赳老秦多尔衮重生之铁血宫阙录三国之青龙镇世未知天命身陷天牢:我的弟弟们是千古一帝再续蜀汉的浪漫铁血西域:开局结果了噶尔丹乱匪开局,看我如何倒反天罡!沈少卿探案智霸大夏:从地主傻儿到开国大帝我只做风流皇帝,天下美人皆归朕宋骑天下一人修真传带着八位嫂嫂流放本想混口饭,科举连中六元惊陛下八百铁骑,镇万界奇葩皇帝合集全家天生神力,我靠脑子科举铁骑朔风:我在汉匈当战神穿成农夫,从神箭手到大楚国公诗仙,神医,商圣,镇国公!敕封一品公侯原始:驯服母虎,走婚诸部山河鉴:隋鼎中国古代奇闻录白话文讲资治通鉴天幕:对!我爹洪武三十五年传位红楼:开局听劝系统,贾颜逆袭综武:我的弟子不知低调为何物元末:红旗漫卷,替天行道考古学家在秦朝宋韵流年两宋风云之中兴四将资治通鉴白话版大秦风骨:王翦传武定天下一大唐风云录消失的墨者十世轮回之炼体时空霸主:从宋末开始打造全球帝大明余晖中的守夜人陛下,您的奏折上热门了!娘娘,请卸甲!顶级带娃:我给朱元璋带大孙